D-MATH	Differential Geometry II	ETH Zürich
Prof. Dr. Urs Lang	Exercise Sheet 5	FS 2025

5.1. Sectional curvature of submanifolds. Let $(\overline{M}, \overline{g})$ be a Riemannian manifold with sectional curvature sec. Let $p \in \overline{M}$ and $L \subset T\overline{M}_p$ an *m*-dimensional linear subspace.

- 1. Prove that there is some r > 0 such that for the open ball $B_r(0) \subset T\overline{M}_p$, the set $M := \exp_p(L \cap B_r(0))$ is an *m*-dimensional submanifold of \overline{M} .
- 2. Let g be the induced metric on M and let see be the sectional curvature of M. Show that for $E \subset TM_p$, we have $\sec_p(E) = \operatorname{sec}_p(E)$ and if L is a 2-dimensional subspace, then $\sec \leq \operatorname{sec}$ on M.

5.2. Codazzi equation. Let $M \subset \overline{M}$ be a submanifold of the Riemannian manifold $(\overline{M}, \overline{g})$. For the second fundamental form h of M, we define

$$(D_X^{\perp}h)(Y,W) := (\bar{D}_X(h(Y,W))^{\perp} - h(D_XY,W) - h(Y,D_XW),$$

where $W, X, Y \in \Gamma(TM)$. Show that the Codazzi equation

$$\left(\bar{R}(X,Y)W\right)^{\perp} = (D_X^{\perp}h)(Y,W) - (D_Y^{\perp}h)(X,W)$$

holds for all $W, X, Y \in \Gamma(TM)$.

5.3. Asymptotic expansion of the circumference. Let M be a manifold, $E \subset TM_p$ a linear 2-plane and $\gamma_r \subset E$ a circle with center 0 and radius r > 0 sufficiently small. Show that

$$L(\exp(\gamma_r)) = 2\pi \left(r - \frac{\sec(E)}{6}r^3 + \mathcal{O}(r^4)\right)$$

for $r \to 0$.